本書主要介紹圖矩陣的理論和應用這一領(lǐng)域的若干研究專題,整理了圖矩陣的基本性質(zhì)和一些經(jīng)典結(jié)果,同時也包括了同行專家和作者近年來的一些研究成果和進展。全書共9章,介紹了矩陣論基礎知識、圖的鄰接矩陣和拉普拉斯矩陣的基本理論及其應用、圖的星集與線星集、圖的譜刻畫、圖的生成樹計數(shù)、圖的電阻距離、圖的狀態(tài)轉(zhuǎn)移以及圖矩陣與網(wǎng)絡中心性
本書是在作者原有高等代數(shù)講義的基礎上,充分借鑒國內(nèi)外高校常用“高等代數(shù)”和“線性代數(shù)”教材的優(yōu)點,順應南京大學本科教育“三三制”人才培養(yǎng)體系的要求,為綜合性大學本科生編寫的一本“高等代數(shù)”教材。書中內(nèi)容包括整數(shù)與多項式、行列式與矩陣、線性方程組、線性空間、線性映射、λ-矩陣、二次型、內(nèi)積空間、雙線性函數(shù)。相關(guān)內(nèi)容的選擇
《線性代數(shù)學習指導》為幫助學生鞏固線性代數(shù)的基本知識,使學生做到舉一反三、融會貫通而編寫!毒性代數(shù)學習指導》共4章,內(nèi)容包括行列式與矩陣、向量空間與線性方程組解的結(jié)構(gòu)、線性空間與線性變換、相似矩陣及二次型。每章都配有基礎知識導學、典型例題解析、練習題分析、單元測驗題及參考答案。書后附有綜合測試題及參考答案。
《線性代數(shù)習題課教程(第二版)》根據(jù)普通高等院校經(jīng)濟類、管理類線性代數(shù)課程的教學大綱和考研大綱編寫而成!毒性代數(shù)習題課教程(第二版)》共6章,主要內(nèi)容包括線性方程組的消元法與矩陣的初等變換、行列式、矩陣、線性方程組、特征值與特征向量、二次型。每章內(nèi)容(除了第1章)分5部分:①知識點小結(jié);②考研數(shù)學大綱要求;③典型例題
《高等代數(shù)》共九章,內(nèi)容包括:行列式、矩陣、線性方程組、多項式、線性空間、線性變換、相似標準形、二次型、內(nèi)積空間及其線性變換。《高等代數(shù)》性重讀者的邏輯推理能力,論證嚴謹而簡明《高等代數(shù)》內(nèi)容由淺入深,條理清楚。在介紹抽象的數(shù)學概念時注重其來源和概念間的內(nèi)在聯(lián)系,《高等代數(shù)》有大量精邊的例題為教師教學所用,還有大量的習
《高等代數(shù)》內(nèi)容主要包括一元多項式理論、矩陣及其運算、線性方程組理論、線性空間及其線性變換、相似不變量與相似標準形、歐氏空間與二次型理論。《高等代數(shù)》力求厘清高等代數(shù)相關(guān)概念與定理產(chǎn)生的歷史背景和科學動機,強調(diào)幾何直觀與代數(shù)方法的有機結(jié)合,使抽象概念、理論可視化,并適當拓展高等代數(shù)理論在現(xiàn)代科技、工程、經(jīng)濟等領(lǐng)域應用的
本書共分為六章,內(nèi)容包括行列式、矩陣、向量組的線性相關(guān)性、線性方程組、矩陣的特征值與特征向量和二次型等基本知識與基本理念.本書突出線性代數(shù)的計算和方法,把抽象的內(nèi)容與具體的例子相結(jié)合,每章的章末增加了綜合例題與自測題,將學習指導融于教材內(nèi)容中.書末附有三套綜合測試題,便于學生檢測該課程的學習情況,并為任課老師提供期末命
本書是應用型高等院校計算機科學與技術(shù)、人工智能、數(shù)據(jù)挖掘、區(qū)塊鏈等專業(yè)本科“離散數(shù)學”課程的教材,內(nèi)容包括四部分:第一部分數(shù)理邏輯(包括第1章命題邏輯和第2章謂詞邏輯)、第二部分集合論初步(包括第3章集合代數(shù)、第4章二元關(guān)系和第5章函數(shù))、第三部分代數(shù)結(jié)構(gòu)(包括第6章代數(shù)結(jié)構(gòu)和第7章格與布爾代數(shù))、第四部分圖論(包括第
本書是高等院校本科生高年級《模糊數(shù)學》教材,書中系統(tǒng)介紹了模糊理論的基本內(nèi)容,包括模糊集合的定義與運算、模糊算子、模糊性的度量、分解定理、表現(xiàn)定理、擴展原理、模糊數(shù)、模糊關(guān)系以及模糊關(guān)系方程等,同時也介紹了隸屬函數(shù)的確定方法、模糊模式識別、模糊聚類分析、模糊綜合評判等應用方面的內(nèi)容.每章配有習題,書末附有習題的部分答案
hisbookaddressesrecentdevelopmentsinsignpatternsforgeneralizedinverses.Thefundamentalimportanceofthefieldsisobvious,sincetheyarerelatedwithqualitativeanalysisof
本書是編者在總結(jié)了多年教學經(jīng)驗和遼寧省一流課程建設成果的基礎上,為了適應“金課”建設的要求,為了適應線性代數(shù)課程教學需要和深化課程思政教學改革的需要而編寫的。主要內(nèi)容包括行列式、矩陣及其運算、向量組的線性相關(guān)性、線性方程組、矩陣的相似及二次型化簡、線性空間與線性變換六章,每章末有同步習題,適當穿插一些歷年考研真題。書后
本書按照教育部對高校理工類本科“線性代數(shù)”課程的基本要求及考研大綱編寫而成.本書注重數(shù)學概念的實際背景與幾何直觀的引入,強調(diào)數(shù)學建模的思想與方法,密切聯(lián)系實際,精選許多實際應用的案例并配有相應的習題,還融入了MATLAB的簡單應用及實例.《BR》本書共8章,內(nèi)容包括行列式、矩陣、矩陣的初等變換與初等矩陣、線性方程組、特
本書系統(tǒng)介紹了群、環(huán)、域、模等四種代數(shù)結(jié)構(gòu)的基本理論、性質(zhì)和研究方法,并簡要介紹了它們在數(shù)學、編碼和密碼等領(lǐng)域的一些簡單應用.全書共七章,第1章是預備知識,第2、3章介紹群論知識及其在計數(shù)問題中的應用,第4、5章介紹環(huán)論知識及其在編碼和密碼中的簡單應用,第6章介紹域擴張理論及其在解決高次方程根式解問題和尺規(guī)作圖問題中的
本書共8章。第1—4章是關(guān)于網(wǎng)絡流的,其中第1章講述網(wǎng)絡流的基礎知識;第2章講述多商品網(wǎng)絡流;第3章研究幾個具體的多商品網(wǎng)絡流問題;第4章介紹路徑泛函。第5—8章是關(guān)于車輛路徑的,其中第5章綜述求解標準車輛路徑問題的文獻并介紹四種經(jīng)典模型;第6章討論綠色車輛路徑問題;第7章研究周期車輛路徑問題;第8章討論滿載車輛路徑問
李群與李代數(shù)是核心數(shù)學領(lǐng)域中的一個重要的交叉學科,且是微分幾何、微分方程、調(diào)和分析、群論、代數(shù)、動力系統(tǒng)、數(shù)論、理論物理、量子化學、應用數(shù)學乃至工程技術(shù)等領(lǐng)域的重要工具,F(xiàn)代高校普遍開設李群與李代數(shù)基礎課程。本書為作者在中國科學院和首都師范大學授課多年的基礎上寫成的李群與李代數(shù)基礎教科書,內(nèi)容共有十二章,分別為引言、分
本書詳細闡述了稀疏矩陣相關(guān)計算的應用背景,并對目前已知的主要壓縮編碼格式進行了詳細介紹。在此基礎上,分別對稀疏矩陣向量乘(SpMV)、稀疏矩陣稀疏矩陣乘(SpGEMM)的算法設計和實現(xiàn)技術(shù)進行了詳細闡述;給出了面向異構(gòu)計算平臺的稀疏矩陣劃分方法及SpMV負載均衡算法,能夠適用于CPU+GPU以及多GPU構(gòu)成的異構(gòu)計算系
本書完整地給出了5階、7階、9階優(yōu)質(zhì)幻方的構(gòu)建方法,成批量地給出了具有典藏價值的5階、7階、9階優(yōu)質(zhì)幻方群。本書對低階優(yōu)質(zhì)幻方進行了深入探討,注重對幻方基礎的系統(tǒng)研究,填補了幻方研究領(lǐng)域的一個空白,本書由零基礎幻方知識入手,多用表格與圖形,全書四個部分各自獨立,各部分都給出了相應類型的幻方構(gòu)建過程實例,都給出了相應類型
經(jīng)典數(shù)論的主要內(nèi)容既包括整數(shù)理論、同余理論、一次到n次剩余方程、丟番圖方程、佩爾方程、連分數(shù)、原根與指數(shù),也包括費爾馬-歐拉定理、威爾遜-高斯定理、秦九韶定理(中國剩余定理)、勒讓德符號與二次互反律、表整數(shù)為平方和、荷斯泰荷姆定理等.此外,它還伴隨著遐邇聞名的完美數(shù)問題、同余數(shù)問題、費爾馬大定理、哥德巴赫猜想、孿生素數(shù)
本書是南開大學代數(shù)類課程整體規(guī)劃系列教材的第四本,是在作者多年從事代數(shù)類系列課程的教學過程中逐漸完成的.在國內(nèi)外已有的同類教材的基礎上,編者根據(jù)自己對代數(shù)學的理解,按照有限群表示論發(fā)展的主要脈絡來安排本書的內(nèi)容全書分為8章,包括預備知識、表示論的基本概念、特征標、McKay對應、群代數(shù)、對稱群與交錯群的表示、誘導表示和
離散數(shù)學是計算機相關(guān)專業(yè)的主干課程之一。本書將理論緊密聯(lián)系實際,摒棄了一些煩瑣的定理證明,從工程實際出發(fā),引入工程案例和解決方案,注重提升學生的應用模擬解題技巧,力求做到脈絡清晰,重點突出,精講多練,實用有效,從而培養(yǎng)學生的抽象思維和縝密概括能力。 本書內(nèi)容包括離散數(shù)學4大分支的基礎理論——數(shù)理邏輯、集合論、代數(shù)系統(tǒng)和