本書針對非凸變分不等式投影類方法中客觀存在的錯誤,給出修正的理論結(jié)果,進(jìn)而利用投影技術(shù)研究上述正則非凸變分不等式與不動點問題、變分包含問題之間的正確關(guān)系,從而建立正則非凸變分不等式和不動點問題之間的等價性。利用這種等價性來討論正則非凸變分不等式的解的存在性,并且利用這等價替代形式來構(gòu)造解正則非凸變分不等式的投影類迭代算
函數(shù)的凸性和廣義凸性是運籌學(xué)和經(jīng)濟(jì)學(xué)研究中的重要基礎(chǔ)理論.本書第一版系統(tǒng)地介紹數(shù)值函數(shù)的各種類型的廣義凸性以及它們在運籌學(xué)和經(jīng)濟(jì)學(xué)中的一些應(yīng)用.主要內(nèi)容包括:凸集與凸函數(shù)、擬凸函數(shù)、可微函數(shù)的廣義凸性、廣義凸性與最優(yōu)性條件、不變凸性及其推廣、廣義單調(diào)性與廣義凸性、二次函數(shù)的廣義凸性和幾類分式函數(shù)的廣義凸性.在此基礎(chǔ)上,
本書主要介紹了無窮維下非光滑函數(shù)和非凸集合的一些基本概念和性質(zhì),以及應(yīng)用到控制理論中。首先在引言章節(jié),作者從數(shù)學(xué)優(yōu)化例子出發(fā)引出了本書的主題-經(jīng)典微分學(xué)的深入研究-非光滑分析。然后分別用三章講述了非光滑函數(shù)和非凸集合的一些計算法則及應(yīng)用場景:第一章介紹了Hilbert空間中的鄰近次微分計算法則;第二章介紹了Banach
本書主要介紹粗糙微分方程及其動力學(xué)方面的若干研究成果.全書分為七章.第1章介紹相關(guān)背景材料;第2章為全書的基礎(chǔ),給出粗糙路徑、高斯粗糙路徑、受控粗糙路徑的定義及相關(guān)性質(zhì);第3章介紹粗糙積分和粗糙微分方程的解理論;第4章介紹隨機(jī)動力系統(tǒng)基本理論;第5章介紹有限維粗糙微分方程所生成隨機(jī)動力系統(tǒng)的相關(guān)動力學(xué)——中心流形、隨機(jī)
郭柏靈論文集第十七卷由17篇獨立論文組成,主要包括了郭柏靈院士在2018年發(fā)表的全部論文。郭柏靈論文集包括的主要內(nèi)容有:確定性偏微分方程和隨機(jī)偏微分方程,研究的問題包括適定性、爆破性、漸近性、孤立波等等。這些論文具有很高的學(xué)術(shù)價值,對偏微分方程、數(shù)學(xué)物理、非線性分析、計算數(shù)學(xué)等方向的科研工作者和研究生,是極好地參考著作
本書是華北電力大學(xué)數(shù)理學(xué)院數(shù)學(xué)分析教研組集體工作的總結(jié),結(jié)合了工科數(shù)理學(xué)院教師多年教學(xué)實踐經(jīng)驗、教育背景和研究經(jīng)歷的優(yōu)勢編寫而成。特別吸收了20世紀(jì)幾位重要數(shù)學(xué)家的觀點,展現(xiàn)出數(shù)學(xué)歷史的畫卷,又融合了自己的見解,具有工科院校數(shù)學(xué)專業(yè)基礎(chǔ)課獨有的特點和亮點。本書注重數(shù)學(xué)史等基本素養(yǎng)的引導(dǎo),使學(xué)習(xí)者能明白數(shù)學(xué)的概念雖然是人
本書通過一系列重要的數(shù)學(xué)地標(biāo),系統(tǒng)地梳理了微積分理論,既包含課堂上沒講授的數(shù)學(xué)通識內(nèi)容,又包含對一些復(fù)雜知識點的細(xì)致拆解,還包含微積分在現(xiàn)實生活中的應(yīng)用,幫助讀者開闊數(shù)學(xué)視野、提高數(shù)學(xué)思維、加深對數(shù)學(xué)的理解。 全書共分為四篇:第一篇“數(shù)學(xué)通識,一些你應(yīng)該了解的觀點和事實”為讀者構(gòu)建數(shù)學(xué)學(xué)習(xí)的理念和方法;第二篇“從有限
泛函分析
On Existence and Multiplicity of Solutions for Some Nonlinea
本書研究的內(nèi)容為非經(jīng)典擴(kuò)散方程在時間依賴空間中的吸引子,受到時間依賴整體吸引子的一些研究成果的啟發(fā),我們首先研究了時間依賴整體吸引子和強(qiáng)吸引子的存在性,之后通過調(diào)整對時間依賴函數(shù)的假設(shè),如重新設(shè)置其下界和單調(diào)性,得到了一些在時間依賴空間中關(guān)于拉回吸引子的存在性和正則性、以及拉回吸引子和整體吸引子的上半連續(xù)性的成果,它們