本書內容包括偏微分方程的基本概念,數(shù)學物理方程相關的背景,數(shù)學模型的建立與定解問題,定解問題的典型求解方法(求通解方法、行波法、分離變量法、積分變換法、格林函數(shù)法以及數(shù)值求解法)。另外還介紹了勒讓德多項式、球函數(shù)和貝塞爾函數(shù)在求解定解問題時的應用。
本書是分數(shù)階系統(tǒng)與高階邏輯形式化驗證的基礎理論研究著作。分數(shù)階系統(tǒng)是建立在分數(shù)階微積分方程理論上實際系統(tǒng)的數(shù)學模型。分數(shù)階微積分方程是擴展傳統(tǒng)微積分學的一種直接方式,即允許微積分方程中對函數(shù)的階次選擇分數(shù),而不僅是現(xiàn)有的整數(shù)。分數(shù)階微積分不僅為系統(tǒng)科學提供了一個新的數(shù)學工具,它的廣泛應用也表明了實際系統(tǒng)動態(tài)過程本質上是
《特殊函數(shù)概論》是著名學者王竹溪先生的著作,書中系統(tǒng)地講述了一些主要的特殊函數(shù),如超幾何函數(shù)、勒讓德函數(shù)、合流超幾何函數(shù)、貝塞耳函數(shù)、橢圓函數(shù)、橢球諧函數(shù)、馬丟(Mathieu)函數(shù)。原著書中有360多道習題,習題數(shù)目巨大,且難度很高,如果單由讀者去自行解答,會給讀者帶來很大的困難和困惑。吳崇試教授根據(jù)書中內容,總結書
本書基于高階約束流、Hamilton結構及Sato理論提出了構造孤立子系統(tǒng)的Rosochatius形變、Kupershmidt形變、帶源形變以及擴展的高維可積系統(tǒng)的一般方法,并以光纖通信及流體力學中的重要模型,如超短脈沖方程、Hirota-方程、Camassa-Holm型方程及q-形變的KP方程等為例詳細闡述了我們提出
本書研究了非線性算子不動點問題迭代逼近的收斂算法。這些算法包括相同空間下的一些非線性算子不動點問題的迭代序列,也包括不同空間下一些非線性算子不動點分裂問題的迭代序列,并在合適的條件下驗證了這些算法具有強收斂或者弱收斂性。書中給出了許多非常初等的例子,并通過這些例子說明一些非線性算子的關系、有界線性算子范數(shù)的計算等,使得
本書根據(jù)數(shù)學分析課程知識點的正常教學順序設計,共六十講。主要通過極限、實數(shù)基本定理、微積分和無窮級數(shù)等教學內容介紹數(shù)學分析中的思想方法。書中內容既有細致到具體小知識點的思想方法,也有覆蓋到數(shù)學分析大知識體系的思想方法。通過這些基本思想方法的講解,使讀者能夠在較短時間內掌握數(shù)學分析思想,對數(shù)學分析內容有深刻的理解,也可以
本書以反應擴散方程的基本理論為基礎,以生物、物理和化學等自然學科為背景,將幾類主要的微分方程、積分方程作為研究對象,介紹非局部反應擴散方程的基本理論、基本方法以及一些常見的應用。內容包括非局部反應擴散方程的行波解、對應柯西問題解的適定性以及斑圖動力學理論;主要用到的方法有Leray-Schauder度理論、穩(wěn)定性分析、
本書是一部系統(tǒng)地介紹Nabla離散分數(shù)階系統(tǒng)理論的專著,其中包含了許多原創(chuàng)性成果和未解問題.針對Nabla離散分數(shù)階系統(tǒng),本書討論了其穩(wěn)定性分析和控制器設計問題,為了便于驗證所提理論,還介紹了數(shù)值實現(xiàn)方法.本書由淺入深、循序漸進地展開,雖不是字斟句酌的教科書,但所給出的結論均提供了巧妙且嚴謹?shù)淖C明,既介紹了靈感來源,提
本書主要討論無窮維Hamilton系統(tǒng),旨在用現(xiàn)代非線性分析的框架研究無窮維Hamilton系統(tǒng)。本書先介紹無窮維Hamilton系統(tǒng)的定義和性質,同時選取現(xiàn)代非線性分析中的常見問題為例解釋其應用。我們采用變分的方法,建立統(tǒng)一的變分框架并且發(fā)展一些抽象的臨界點理論來處理無窮維Hamilton系統(tǒng)。特別地,對于量子理論中
本書詳細介紹小波變換的起源、原理和應用,內容覆蓋傅里葉變換、窗口傅里葉變換、框架理論、連續(xù)小波變換、多分辨率分析、Daubechies正交小波、小波包、小波提升理論以及小波在信號處理和圖像處理等方面的應用,涵蓋了發(fā)展比較成熟的小波分析的所有基本內容。另外,本書特別關注實際應用和數(shù)學理論之間的關聯(lián),強調解決實際問題中的數(shù)