定 價(jià):28.4 元
叢書(shū)名:天元基金影印數(shù)學(xué)叢書(shū)
- 作者:[意] 切爾奇納尼 等 著
- 出版時(shí)間:2009/2/1
- ISBN:9787040255355
- 出 版 社:高等教育出版社
- 中圖法分類(lèi):O552.3
- 頁(yè)碼:317
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16開(kāi)
《稀薄氣體的數(shù)學(xué)理論(影印版)》講述了稀薄氣體的數(shù)學(xué)理論(Boltzmann方程的數(shù)學(xué)理論)中的三個(gè)主要問(wèn)題直到1994年的理論發(fā)展,包括BoItzmann方程是怎樣從經(jīng)典力學(xué)推出來(lái)的,即BoItzmann方程是怎樣從Liouville方程推出來(lái)的;Boltzmann方程解的存在性問(wèn)題;Boltzmann方程與流體力學(xué)的關(guān)系,即EuIer方程和Navier-Stokes方程是怎樣從Liouville方程推出來(lái)的。另外,《稀薄氣體的數(shù)學(xué)理論(影印版)》還介紹了O.LanfordⅢ,DiPerna,P.L.Lions等的出色工作,可作為BOItzmann方程的數(shù)學(xué)理論的優(yōu)秀的教材和參考書(shū)。
為了更好地借鑒國(guó)外數(shù)學(xué)教育與研究的成功經(jīng)驗(yàn),促進(jìn)我國(guó)數(shù)學(xué)教育與研究事業(yè)的發(fā)展,提高高等學(xué)校數(shù)學(xué)教育教學(xué)質(zhì)量,本著“為我國(guó)熱愛(ài)數(shù)學(xué)的青年創(chuàng)造一個(gè)較好的學(xué)習(xí)數(shù)學(xué)的環(huán)境”這一宗旨,天元基金贊助出版“天元基金影印數(shù)學(xué)叢書(shū)”。
該叢書(shū)主要包含國(guó)外反映近代數(shù)學(xué)發(fā)展的純數(shù)學(xué)與應(yīng)用數(shù)學(xué)方面的優(yōu)秀書(shū)籍,天元基金邀請(qǐng)國(guó)內(nèi)各個(gè)方向的知名數(shù)學(xué)家參與選題的工作,經(jīng)專(zhuān)家遴選、推薦,由高等教育出版社影印出版。為了提高我國(guó)數(shù)學(xué)研究生教學(xué)的水平,暫把選書(shū)的目標(biāo)確定在研究生教材上。當(dāng)然,有的書(shū)也可作為高年級(jí)本科生教材或參考書(shū),有的書(shū)則介于研究生教材與專(zhuān)著之間。
歡迎各方專(zhuān)家、讀者對(duì)本叢書(shū)的選題、印刷、銷(xiāo)售等工作提出批評(píng)和建議。
Introduction
1 Historical Introduction
1.1 What is a Gas? From the Billiard Table to Boyles Law
1.2 Brief History of Kinetic Theory
2 Informal Derivation of the Boltzmann Equation
2.1 The Phase Space and the Liouville Equation
2.2 Boltzmanns Argument in a Modern Perspective
2.3 Molecular Chaos. Critique and Justification
2.4 The BBGKY Hierarchy
2.5 The Boltzmann Hierarchy and Its Relation to the Boltzmann Equation
3 Elementary Properties of the Solutions
3.1 Collision Invariants 33
3.2 The Boltzmann Inequality and the Maxwell Distributions
3.3 The Macroscopic Balance Equations
3.4 The H-Theorem
3.5 Loschmidts Paradox
3.6 Poincares Recurrence and Zermelos Paradox
3.7 Equilibrium States and Maxwellian Distributions
3.8 Hydrodynamical Limit and Other Scalings
4 Rigorous Validity of the Boltzmann Equation
4.1 Significance of the Problem
4.2 Hard-Sphere Dynamics
4.3 Transition to L1. The Liouville Equation and the BBGKY Hierarchy Revisited
4.4 Rigorous Validity of the Boltzmann Equation
4.5 Validity of the Boltzmann Equation for a Rare Cloud of Gas in the Vacuum
4.6 Interpretation
4.7 The Emergence of Irreversibility
4.8 More on the Boltzmann Hierarchy
Appendix 4.A More about Hard-Sphere Dynamics
Appendix 4.B A Rigorous Derivation of the BBGKY Hierarchy
Appendix 4.C Uchiyamas Example
5 Existence and Uniqueness Results
5.1 Preliminary Remarks
5.2 Existence from Validity, and Overview
5.3 A General Global Existence Result
5.4 Generalizations and Other Remarks
Appendix 5.A
6 The Initial Value Problem for the Homogeneous Boltzmann Equation
6.1 An Existence Theorem for a Modified Equation
6.2 Removing the Cutoff: The L1-Theory for the Full Equation
6.3 The L∞-Theory and Classical Solutions
6.4 Long Time Behavior
6.5 Further Developments and Comments
Appendix 6.A
Appendix 6.B
Appendix 6.C
7 Perturbations of Equilibria and Space Homogeneous Solutions
7.1 The Linearized Collision Operator
7.2 The Basic Properties of the Linearized Collision Operator
7.3 Spectral Properties of the Fourier-Transformed, Linearized Boltzmann Equation
7.4 The Asymptotic Behavior of the Solution of the Cauchy Problem for the Linearized Boltzmann Equation
7.5 The Global Existence Theorem for the Nonlinear Equation
7.6 Extensions: The Periodic Case and Problems in One and Two Dimensions
7.7 A Further Extension: Solutions Close to a Space Homogeneous Solution
8 Boundary Conditions
8.1 Introduction
8.2 The Scattering Kernel
8.3 The Accommodation Coefficients
8.4 Mathematical Models
8.5 A Remarkable Inequality
9 Existence Results for Initial-Boundary and Boundary Value Problems
9.1 Preliminary Remarks
9.2 Results on the Traces
9.3 Properties of the Free-Streaming Operator
9.4 Existence in a Vessel with Isothermal Boundary
9.5 Rigorous Proof of the Approach to Equilibrium
9.6 Perturbations of Equilibria
9.7 A Steady Problem
9.8 Stability of the Steady Flow Past an Obstacle
9.9 Concluding Remarks
10 Particle Simulation of the Boltzmann Equation
10.1 Rationale amd Overview
10.2 Low Discrepancy Methods
10.3 Birds Scheme
11 Hydrodynamical Limits
11.1 A Formal Discussion
11.2 The Hilbert Expansion
11.3 The Entropy Approach to the Hydrodynamical Limit
11.4 The Hydrodynamical Limit for Short Times
11.5 Other Scalings and the Incompressible Navier-Stokes Equations
12 Open Problems and New Directions
Author Index
Subject Index