![]() ![]() |
大型煤電基地水資源保護(hù)關(guān)鍵技術(shù) 讀者對(duì)象:礦業(yè)學(xué)科、生態(tài)學(xué)科、環(huán)境學(xué)科的科研人員、高校教師、相關(guān)專業(yè)的高年級(jí)本科生和研究生,從事煤炭開(kāi)采、地下水保護(hù)、礦區(qū)生態(tài)修復(fù)等工作的技術(shù)人員 ![]()
水資源保護(hù)是我國(guó)大型煤電基地科學(xué)開(kāi)發(fā)和區(qū)域生態(tài)文明建設(shè)的重要保障。本書(shū)按照“系統(tǒng)保護(hù)與協(xié)同利用”思路,針對(duì)大型煤電基地開(kāi)發(fā)水資源保護(hù)利用重大技術(shù)難題,結(jié)合東部草原區(qū)典型基地研究與示范工程,聚焦礦區(qū)水資源地質(zhì)保護(hù)評(píng)價(jià)、軟巖區(qū)大型露天/井工礦地下水庫(kù)構(gòu)建、煤炭開(kāi)采地下水原位保護(hù)、礦井 /礦坑水潔凈儲(chǔ)存與生態(tài)利用、水資源多目標(biāo)優(yōu)化配置與調(diào)控等關(guān)鍵技術(shù)和方法,提出了采動(dòng)滲流分析、開(kāi)采導(dǎo)水裂隙帶自修復(fù)促進(jìn)等新方法和大型露天礦立體儲(chǔ)水模式、露天地下水庫(kù)和含水層保護(hù)的柔性開(kāi)采等新技術(shù),初步形成適于大型煤電基地水資源科學(xué)保護(hù)與有效利用技術(shù)體系。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。 ![]()
生態(tài)脆弱區(qū)煤炭開(kāi)采地下水保護(hù)與地表生態(tài)修復(fù)關(guān)鍵技術(shù) 國(guó)家科技進(jìn)步獎(jiǎng) 二等
目錄
序 前言 第1章 概述 1 1.1 研究背景 1 1.1.1 東部草原區(qū)大型煤電基地及煤礦分布特征 1 1.1.2 東部草原區(qū)煤炭資源開(kāi)發(fā)特征 9 1.1.3 大型煤電基地水資源保護(hù)利用挑戰(zhàn) 14 1.2 國(guó)內(nèi)外研究現(xiàn)狀及存在問(wèn)題 16 1.2.1 大型煤礦區(qū)煤炭開(kāi)采水資源影響研究 17 1.2.2 開(kāi)采擾動(dòng)下地下水保護(hù)方法研究 19 1.2.3 地下水資源保護(hù)與利用方法研究 22 1.3 東部草原區(qū)大型煤電基地地下水資源保護(hù)研究 25 1.3.1 面臨的主要問(wèn)題和解決技術(shù)思路 25 1.3.2 主要研究?jī)?nèi)容與方法 27 第2章 大型煤電基地地下水資源地質(zhì)保護(hù)評(píng)價(jià)方法 29 2.1 地下水資源地質(zhì)保護(hù)的基本問(wèn)題 29 2.1.1 地下水地質(zhì)保護(hù)與機(jī)制 29 2.1.2 地下水資源地質(zhì)保護(hù)區(qū)劃 32 2.2 地下水地質(zhì)保護(hù)基本條件 34 2.2.1 地下水地質(zhì)保護(hù)自然地質(zhì)條件 35 2.2.2 地下水地質(zhì)保護(hù)工程地質(zhì)條件 41 2.3 地下水保護(hù)地質(zhì)模型與適宜性評(píng)價(jià) 48 2.3.1 地下水保護(hù)地質(zhì)模型 48 2.3.2 地質(zhì)保護(hù)適宜性評(píng)價(jià)數(shù)學(xué)模型 51 2.3.3 地質(zhì)保護(hù)適宜性分類評(píng)價(jià) 55 2.4 地下水地質(zhì)保護(hù)分析 58 2.4.1 擾動(dòng)區(qū)地下水地質(zhì)保護(hù)適宜性分析 58 2.4.2 采損區(qū)地下水地質(zhì)保護(hù)適宜性綜合分析 60 2.4.3 典型礦區(qū)地下水地質(zhì)保護(hù)適宜性分析 61 第3章 大型露天煤礦地下水庫(kù)及建設(shè)關(guān)鍵技術(shù) 75 3.1 露天煤礦地下水庫(kù)儲(chǔ)水能力 75 3.1.1 露天煤礦地下水庫(kù)基本概念 75 3.1.2 露天煤礦地下水庫(kù)儲(chǔ)水機(jī)制與模式 79 3.1.3 地下水庫(kù)庫(kù)容確定方法 83 3.2 露天煤礦地下水庫(kù)設(shè)計(jì) 90 3.2.1 設(shè)計(jì)原則和主要指標(biāo) 90 3.2.2 地下水庫(kù)主要功能設(shè)計(jì) 95 3.2.3 地下水庫(kù)分項(xiàng)設(shè)計(jì) 96 3.3 露天煤礦地下水庫(kù)建設(shè)關(guān)鍵技術(shù) 104 3.3.1 地下水庫(kù)選址技術(shù) 104 3.3.2 儲(chǔ)水體重構(gòu)技術(shù) 107 3.3.3 壩體構(gòu)筑技術(shù) 116 3.3.4 采-排-筑-復(fù)一體化技術(shù) 121 第4章 大型井工礦地下水庫(kù)儲(chǔ)水空間研究 125 4.1 采動(dòng)導(dǎo)水裂隙帶演化規(guī)律 125 4.1.1 超大工作面開(kāi)采導(dǎo)水裂隙帶結(jié)構(gòu)及變化基本規(guī)律 125 4.1.2 中硬覆巖導(dǎo)水裂隙帶演化規(guī)律分析 128 4.1.3 軟弱覆巖導(dǎo)水裂隙帶演化規(guī)律分析 134 4.1.4 巖性軟硬對(duì)覆巖導(dǎo)水裂隙帶演化的影響 141 4.2 覆巖導(dǎo)水裂隙帶滲流特性研究 142 4.2.1 覆巖導(dǎo)水裂隙類型劃分 143 4.2.2 不同類型覆巖裂隙的滲流特性分析 144 4.2.3 采動(dòng)導(dǎo)水裂隙帶導(dǎo)水主通道分析 150 4.3 地下水庫(kù)儲(chǔ)水系數(shù)研究 154 4.3.1 地下水庫(kù)儲(chǔ)水空間物理模型 154 4.3.2 采動(dòng)區(qū)儲(chǔ)水介質(zhì)空隙量分析 155 4.3.3 地下水庫(kù)的儲(chǔ)水系數(shù)分析 161 第5章 采動(dòng)覆巖導(dǎo)水裂隙帶自修復(fù)機(jī)制與促進(jìn)方法 164 5.1 采動(dòng)覆巖導(dǎo)水裂隙帶自修復(fù)機(jī)制 164 5.1.1 自修復(fù)的定義及特征 164 5.1.2 自修復(fù)作用過(guò)程 166 5.2 水-氣-巖耦合作用的裂隙滲流影響實(shí)驗(yàn)研究 167 5.2.1 砂質(zhì)泥巖壓剪裂隙巖樣實(shí)驗(yàn)分析 167 5.2.2 典型巖性張拉裂隙巖樣實(shí)驗(yàn)研究 176 5.2.3 酸性水對(duì)含鐵破碎巖樣降滲特性實(shí)驗(yàn)分析 187 5.3 采動(dòng)裂隙人工引導(dǎo)自修復(fù)促進(jìn)方法 193 5.3.1 人工引導(dǎo)裂隙自修復(fù)的促進(jìn)機(jī)制 194 5.3.2 基于鐵/鈣質(zhì)化學(xué)沉淀封堵的自修復(fù)促進(jìn)方法 195 5.3.3 基于水平定向鉆孔注漿封堵的修復(fù)促進(jìn)方法 201 5.3.4 基于邊界煤柱/體松動(dòng)爆破的裂隙促進(jìn)閉合修復(fù)方法 211 第6章 軟巖區(qū)煤炭開(kāi)采地下水保護(hù)與分析方法 214 6.1 地下水原位保護(hù)機(jī)制與技術(shù)途徑 214 6.1.1 軟巖區(qū)水文地質(zhì)與礦井水特征 215 6.1.2 軟巖覆巖區(qū)地下水原位保護(hù)機(jī)制 218 6.1.3 地下水原位保護(hù)技術(shù)途徑與模式 220 6.2 采動(dòng)滲流系統(tǒng)及滲流場(chǎng)模型 222 6.2.1 采動(dòng)滲流系統(tǒng)及特征 222 6.2.2 采動(dòng)滲流場(chǎng)結(jié)構(gòu)與效應(yīng)模型 226 6.3 采動(dòng)滲流場(chǎng)特征分析 231 6.3.1 “采-滲耦合”效應(yīng)分析 232 6.3.2 采動(dòng)滲流擾動(dòng)特征 234 6.3.3 采動(dòng)滲流輻射特征 240 6.3.4 多源采動(dòng)滲流耦合關(guān)系 244 6.4 采動(dòng)滲流理論應(yīng)用 244 6.4.1 導(dǎo)通區(qū)辨識(shí)應(yīng)用 244 6.4.2 保水安全開(kāi)采應(yīng)用 254 第7章 東部草原區(qū)大型煤礦礦坑/井水的潔凈儲(chǔ)存與利用技術(shù) 261 7.1 東部草原區(qū)煤炭開(kāi)采礦坑/井水來(lái)源及特征 261 7.1.1 礦坑/井水來(lái)源及主要特征 261 7.1.2 水文地球化學(xué)特征 264 7.1.3 地下儲(chǔ)水的水質(zhì)安全特征 266 7.2 寶日希勒露天礦礦坑水儲(chǔ)存與利用風(fēng)險(xiǎn)識(shí)別 267 7.2.1 礦井水地下儲(chǔ)存污染組分特征 267 7.2.2 露天礦礦坑水地下儲(chǔ)存安全風(fēng)險(xiǎn)評(píng)價(jià) 270 7.2.3 地下水庫(kù)潔凈調(diào)控功能設(shè)計(jì) 273 7.3 敏東一礦礦井水儲(chǔ)存與利用過(guò)程風(fēng)險(xiǎn)識(shí)別 281 7.3.1 礦井水污染組分特征與風(fēng)險(xiǎn)因子識(shí)別 281 7.3.2 礦井水儲(chǔ)存凈化過(guò)程水質(zhì)演化規(guī)律 282 7.3.3 典型污染物遷移轉(zhuǎn)化過(guò)程風(fēng)險(xiǎn)分析 283 7.4 礦坑/井水潔凈儲(chǔ)存風(fēng)險(xiǎn)控制方法 287 7.4.1 礦區(qū)水質(zhì)分析及風(fēng)險(xiǎn)控制 287 7.4.2 礦坑水處理工藝組合優(yōu)化與效果評(píng)價(jià) 289 7.4.3 礦井水處理工藝組合優(yōu)化與效果評(píng)價(jià) 292 第8章 面向生態(tài)的水資源多目標(biāo)優(yōu)化配置與調(diào)控方法 295 8.1 煤電基地水資源來(lái)源與利用途徑 295 8.1.1 煤電基地水資源主要來(lái)源及分布特點(diǎn) 295 8.1.2 煤電基地水資源主要利用途徑 299 8.2 典型煤電基地水資源優(yōu)化配置方法 300 8.2.1 典型煤電基地需水量預(yù)測(cè)及平衡分析 300 8.2.2 煤電基地水資源多目標(biāo)優(yōu)化配置方法與分析 306 8.3 煤電基地水資源調(diào)控機(jī)制與方法 315 8.3.1 煤電基地水資源動(dòng)態(tài)調(diào)控機(jī)制 315 8.3.2 基于煤電基地可持續(xù)開(kāi)發(fā)的管控方法 316 8.3.3 基于有限水資源量的調(diào)控方法 318 8.3.4 基于多類型水質(zhì)的調(diào)控方法 320 第9章 示范區(qū)地下水資源保護(hù)工程應(yīng)用實(shí)例 323 9.1 勝利礦區(qū)地表儲(chǔ)存與轉(zhuǎn)移利用工程應(yīng)用 323 9.1.1 礦區(qū)水資源分布及利用情況 323 9.1.2 基于地表“水湖”的儲(chǔ)存和轉(zhuǎn)移利用模式與設(shè)計(jì) 326 9.1.3 工程實(shí)施及效果 327 9.2 寶日希勒露天煤礦地下水庫(kù)建設(shè)與工程應(yīng)用 329 9.2.1 寶日希勒礦區(qū)水資源分布及保護(hù)模式 329 9.2.2 近地表儲(chǔ)水層系統(tǒng)構(gòu)建及效果分析 333 9.2.3 地下水庫(kù)系統(tǒng)構(gòu)建及效果分析 338 9.3 敏東一礦地下水資源保護(hù)方法應(yīng)用研究 347 9.3.1 軟巖條件構(gòu)建地下水庫(kù)工程試驗(yàn) 347 9.3.2 第四系含水層轉(zhuǎn)移存儲(chǔ)可行性試驗(yàn) 352 9.3.3 礦井涌水生態(tài)利用試驗(yàn) 358 9.3.4 地下水原位保護(hù)可行性研究與分析 363 結(jié)束語(yǔ) 375 主要參考文獻(xiàn) 377 Contents xi· Contents Foreword Preface Chapter 1 Overview 1 1.1 General background 1 1.1.1 Distribution feature of mines in large-scale coal-power bases of the eastern prairie area 1 1.1.2 Development feature of coal resource in the eastern prairie area 9 1.1.3 Challenge of protecting and using water resources in large-scale coal-power bases 14 1.2 Research status and existing problems at home and abroad 16 1.2.1 The mining impact on water resources in large coal mining areas 17 1.2.2 The protection methods of groundwater resources under mining disturbance 19 1.2.3 The method research for protecting and using groundwater resources 22 1.3 Study on protecting groundwater resource in large coal-power bases of eastern prairie area 25 1.3.1 Existing problems and technical thinking for solving them 25 1.3.2 Main content and methods of the research 27 Chapter 2 Evaluation method for geological protection of groundwater resources in large-scale coal-power bases 29 2.1 Basic issues in the geological protection of groundwater resources 29 2.1.1 Geological protection and mechanism of groundwater 29 2.1.2 Division for geological protection of groundwater resources 32 2.2 Basic conditions for geological protection of groundwater 34 2.2.1 Natural conditions for the protection 35 2.2.2 Geo-engineering conditions for the protection 41 2.3 Geological models and suitability evaluation for groundwater protection 48 2.3.1 Geological models for groundwater protection 48 2.3.2 Mathematical models of the suitability evaluation 51 2.3.3 Suitability evaluation for the classified geo-conditions 55 2.4 Suitability analysis for geological protection of groundwater 58 2.4.1 Suitability analysis of the protection in disturbance zones 58 2.4.2 Suitability analysis of the protection in damaged areas 60 2.4.3 Suitability analysis for the protection in typical mining areas 61 Chapter 3 Construction of underground reservoir and key technologies in large-sized open-pit mines 75 3.1 Water-storage capability of underground reservoirs in open-pit mines 75 3.1.1 Basic concepts of underground reservoirs in open-pit mines 75 3.1.2 Water-storage mechanism and the mode in open-pit mines 79 3.1.3 Determining method for storage capacity of underground reservoirs 83 3.2 Design techniques for underground reservoirs in open-pit mines 90 3.2.1 Design principles and main indicators for construction of groundwater reservoirs 90 3.2.2 Function design of underground reservoir system 95 3.2.3 Itemized design of underground reservoir 96 3.3 Key technologies for the construction of underground reservoirs in open-pit mines 104 3.3.1 Siting methods for the underground reservoirs 104 3.3.2 Reconstruction techniques of water-storage body 107 3.3.3 Construction techniques for underground dam 116 3.3.4 Mining-dumping-constructing-restoring integrated technology for the reservoir construction 121 Chapter 4 Research on water-storage space of underground reservoirs in large-sized mine 125 4.1 Evolution law of mining-induced water-conducting fissure zone 125 4.1.1 Structure of water-conducting fissure zone and its evolution law for large-sized working face 125 4.1.2 Evolution law of water-conducting fissure zone under mining coverage with medium-hard rocks 128 4.1.3 Evolution law of water-conducting fissure zone under mining coverage with soft rocks 134 4.1.4 Influence on the evolution of water-conducting fissure zone by lithology hardness of mining coverage 141 4.2 Seepage features of the water-conducting fissure zone 142 4.2.1 Classification of water-conducting fissure zone 143 4.2.2 Seepage features of water-conducting fissure zone with different type of rocks 144 4.2.3 Main channel of mining-induced water-conducting fissure zone 150 4.3 Water-storage coefficient of underground reservoir 154 4.3.1 Physical model of water-storage space of underground reservoir 154 4.3.2 Porosity analysis of water-storage medium in mining area 155 4.3.3 Water-storage coefficient analysis of underground reservoir 161 Chapter 5 Self-healing mechanism of water-conducting fissures zone and its stimulating methods 164 5.1 Self-healing mechanisms of water-conducting fissure 164 5.1.1 Self-healing definition and its feature 164 5.1.2 Self-healing work process of water-conducting fissures zone 166 5.2 Experimental study on influences on fissure’s seepage by water-gas-rock interactions 167 5.2.1 Analysis of sandy mudstone specimens from compression-shear fissure zone 167 5.2.2 Analysis of typical rock specimens from tension fissure zone 176 5.2.3 Permeability reduction characteristics of iron-bearing broken rock samples with acid water 187 5.3 Artificially guided promotion method for the self-healing process of mining-induced fissures zone 193 5.3.1 Stimulating mechanism of artificial-guided self-healing fissure and technical approaches 194 5.3.2 Self-healing stimulating methods by plugged iron/calcium chemical precipitation 195 5.3.3 Repair promotion methods by grouting plugging of horizontal directional drilling 201 5.3.4 Repair methods of accelerating fissure closure by loose-blasting pillar/body boundary 211 Chapter 6 Analysis method for groundwater protection of coal mining under soft-rock coverage areas 214 6.1 Mechanisms and technical approaches for in-situ protection of groundwater 214 6.1.1 Features of geology and mine water in soft-rock coverage areas 215 6.1.2 In-situ protection mechanisms for groundwater in soft-rock coverage areas 218 6.1.3 Technical approaches and models for in-situ protection of groundwater 220 6.2 Mining seepage system and mining-induced seepage field model 222 6.2.1 Mining seepage system and main features 222 6.2.2 Structure and effect model of mining-induced seepage field 226 6.3 Features analysis of mining-induced seepage field 231 6.3.1 Features analysis of mining-seepage coupling effect 232 6.3.2 Disturbance features of mining-induced seepage 234 6.3.3 Radiation features of mining-induced seepage 240 6.3.4 Coupling relationship of mining-seepage process under multi-sources mining-seepage 244 6.4 Theoretical application of mining-induced seepage field 244 6.4.1 Identification of main water-conducting channel in mining-induced fissure zone 244 6.4.2 Analysis for water conservation and safe mining 254 Chapter 7 Clean storage and use technologies of groundwater for large-sized mine/pit in eastern grassland area 261 7.1 Source and characteristics of coal pit or mine groundwater 261 7.1.1 Sources and main features of pit or mine groundwater 261 7.1.2 Hydrogeochemical features of groundwater 264 7.1.3 Water-quality guarantee of underground storage 266 7.2 Risk identification of pit-water storage and utilization in Baorixile open-pit mine 267 7.2.1 Polluted component features of pit-water in underground storage 267 7.2.2 Safety risk assessment of underground storage of pit-water in open-pit mine 270 7.2.3 Cleaning design of operation and controls system for underground reservoir 273 7.3 Risk identification of mine-water storage and its utilization in Mindong No.1 mine 281 7.3.1 Polluted component features of mine-water and risk-factor identification for storage 281 7.3.2 Evolution law of water quality in mine-water storage and purification process 282 7.3.3 Migration and transformation mechanism of typical pollutants from mine water 283 7.4 Risk control method for clean storage based on treatment process of mine/pit water 287 7.4.1 Typical pollutant treatment process and parameter control 287 7.4.2 Optimization and effect evaluation for combined treatment process of pit water 289 7.4.3 Optimization and effect evaluation for combined treatment process of mine-water 292 Chapter 8 Optimally allocating and regulating water resources with ecology-oriented & multi-objectives 295 8.1 Sources and usage of water resources in coal-power base 295 8.1.1 Main sources and distribution characteristics of water resources 295 8.1.2 Main usages of water resources 299 8.2 Optimized allocation method of water resources for the typical coal power base 300 8.2.1 Water demand prediction and balanced analysis 300 8.2.2 Optimal allocation method and analysis of multi-objective usage of water resources 306 8.3 Regulation mechanism and methods of water resources in the coal-power base 315 8.3.1 Mechanism of dynamic regulation on water resources 315 8.3.2 Management and regulation methods for sustainable development 316 8.3.3 Regulation method based on limited-quantity water resource 318 8.3.4 Regulation and control methods based on multi-type water quality 320 Chapter 9 Engineering examples of protecting groundwater resources in sample area 323 9.1 Engineering application of storage and transfer based on the“Lake”model in Shengli pit area 323 9.1.1 Distribution and usage of water resources 323 9.1.2 Model and design of storage, transfer and utilization based on the“Lake” model 326 9.1.3 Engineering implementation and utilization effect 327 9.2 Construction example of the underground reservoir in Baorixile pit mine 329 9.2.1 Distribution and protection mode of groundwater resources in mining area 329 9.2.2 Construction of near-surface water storage system and its effect analysis 333 9.2.3 Construction of groundwater reservoir system and its effect analysis 338 9.3 Applied research on protection methods of groundwater in Mindong No.1 mine 347 9.3.1 On-site test of constructing underground reservoir under soft-rock coverage 347 9.3.2 On-site feasibility test of transfer and storage in the aquifer of Quaternary strata 352 9.3.3 On-site test and analysis for ecology usage of mine water 358 9.3.4 Feasibility study and analysis on groundwater protection in-situ 363 Conclusions 375 References 377
你還可能感興趣
我要評(píng)論
|