汽車系統(tǒng)動(dòng)力學(xué)--理論建模與應(yīng)用(英文版)
定 價(jià):199 元
- 作者:趙又群,林棻
- 出版時(shí)間:2025/6/1
- ISBN:9787030792631
- 出 版 社:科學(xué)出版社
- 中圖法分類:U461.1
- 頁碼:272
- 紙張:
- 版次:1
- 開本:16
該書通過大量的調(diào)研和素材搜集,跟蹤最新的行業(yè)發(fā)展現(xiàn)狀,結(jié)合作者在行業(yè)多年的教學(xué)科研經(jīng)歷,將最新的汽車操縱逆動(dòng)力學(xué)、不充氣輪胎動(dòng)力學(xué)、汽車動(dòng)力學(xué)狀態(tài)和參數(shù)估計(jì)方法以及駕駛員-汽車閉環(huán)系統(tǒng)操縱動(dòng)力學(xué)新方法、汽車垂向逆動(dòng)力學(xué)、懸架控制等研究成果作為本書的重點(diǎn)章節(jié)進(jìn)行介紹,最大程度的反映了當(dāng)前汽車系統(tǒng)動(dòng)力學(xué)的前沿技術(shù)狀況和發(fā)展趨勢;另一方面,該書將汽車系統(tǒng)動(dòng)力學(xué)的知識(shí)點(diǎn)進(jìn)行了系統(tǒng)的梳理和分類,形成了具有高度體系化的框架結(jié)構(gòu),對于學(xué)生深入理解本領(lǐng)域的知識(shí)點(diǎn)起到了至關(guān)重要的作用。本書豐富和提升廣大車輛工程專業(yè)本科生和研究生的知識(shí)面與能力,對于培養(yǎng)面向高級底盤控制和自動(dòng)駕駛為目標(biāo)的汽車類人才具有重要積極的意義。
更多科學(xué)出版社服務(wù),請掃碼獲取。
1998年3月畢業(yè)于吉林工業(yè)大學(xué)汽車設(shè)計(jì)制造專業(yè),獲得工學(xué)博士學(xué)位;2004年9月-2005年1月在美國密西根大學(xué)交流訪學(xué);2001年1月任職教授,2003年8月任職車輛工程專業(yè)博士生導(dǎo)師機(jī)械結(jié)構(gòu)力學(xué)及控制國家重點(diǎn)實(shí)驗(yàn)室教授,2019年國防技術(shù)發(fā)明二等獎(jiǎng),排名第一,
Contents
Preface
1 Introduction 1
1.1 System and system dynamics 1
1.2 Structure and composition of vehicle systems 3
1.3 Research contents and methods of vehicle system dynamics 4
1.3.1 Research contents 4
1.3.2 Research methods 6
1.4 Theory and research methods of vehicle handling inverse dynamics 11
1.4.1 Principle of handling inverse dynamics 11
1.4.2 Modeling and solution of handling inverse dynamics 13
References 17
2 Mechanical properties of pneumatic and non-pneumatic tires 19
2.1 Construction of tires 19
2.1.1 Construction of the pneumatic tire 19
2.1.2 Construction of the non-pneumatic mechanical elastic safe wheel 19
2.2 Mechanical properties of the pneumatic tire 20
2.2.1 Coordinate system of the tire 20
2.2.2 Tire cornering phenomenon and lateral force-sideslip angle curve 21
2.2.3 Aligning torque 23
2.2.4 Typical mechanics model of the tire 25
2.3 Mechanical properties of NMESW 27
2.3.1 NMESW loading mode and working principle 27
2.3.2 Rolling mechanism of NMESW28
2.3.3 Cornering characteristics of NMESW 32
2.3.4 Camber and cornering characteristics of NMESW 34
References 38
3 Vehicle stability control and estimation of road adhesion coefficient based on vehicle longitudinal dynamics 39
3.1 Review on vehicle longitudinal dynamics 39
3.1.1 Significance of research on dynamic characteristics of vehicle longitudinal system 39
3.1.2 Basic problems in the study of dynamic characteristics of vehicle longitudinal system 40
3.2 Vehicle stability control system 40
3.2.1 Summarize 40
3.2.2 Basic principle 41
3.2.3 Control method 42
3.2.4 Dynamic model and simulation 44
3.3 Estimation of road adhesion coefficient based on longitudinal dynamics 49
3.3.1 Slip-slope road adhesion coefficient estimation method 49
3.3.2 Longitudinal force estimation 50
3.3.3 Slip estimation 53
3.3.4 Slip-slope estimation method based on RLS 54
3.3.5 Virtual test verification 56
References 64
4 Independent all-wheel drive distribution control and estimation of tire effective cornering stiffness based on vehicle lateral dynamics 66
4.1 Review of vehicle lateral system dynamics.67
4.1.1 Introduction of evaluation method development for vehicle lateral system dynamic characteristics.67
4.1.2 The significance of research on closed-loop lateral system dynamics 69
4.1.3 Basic problems in the vehicle lateral system dynamics 70
4.2 Independent all-wheel drive distribution control 71
4.2.1 Conventional four-wheel drive system 71
4.2.2 Differential-based torque distribution between left and right wheels 71
4.2.3 Active control of all-wheel torque 72
4.3 Estimation of tire effective cornering stiffness 73
4.3.1 Estimation of tire effective cornering stiffness based on the time rate of change of acceleration 73
4.3.2 Feasibility analysis of estimation method 77
4.3.3 Simulation test verification 79
References 84
5 Evaluation of active safety based on driver-vehicle closed-loop control system dynamics 85
5.1 Theoretical basis.85
5.1.1 Driver-vehicle-road closed-loop system model 85
5.1.2 Random processes 88
5.1.3 Kronecker algebra basis.89
5.1.4 Second moment technique 91
5.2 Response analysis method of driver-vehicle-road closed-loop control system 92
5.2.1 Existing precise integration algorithm.93
5.2.2 Extension of precise integration algorithms 94
5.2.3 Numerical simulation example 95
5.3 Evaluation index of vehicle active safety 98
5.3.1 Supplementary to the closed-loop individual evaluation indexes 98
5.3.2 Supplement to the open-loop individual evaluation indexes 100
5.3.3 Selection of comprehensive evaluation index and weighting coefficient 100
5.3.4 Correlation between closed-loop comprehensive evaluation index and open-loop compre-hensive evaluation index 101
5.3.5 Numerical simulation example 101
5.3.6 Conclusion 104
References 105
6 A new evaluation method for driver-vehicle closed-loop handling system dynamics 106
6.1 Maneuverability evaluation of the driver-vehicle closed-loop system with random road inputs 106
6.1.1 Driver-vehicle-road closed-loop system model with random road input 106
6.1.2 Self-spectral density of effective road input 109
6.1.3 Time domain analysis of driver-vehicle-road stochastic closed-loop
system response 109
6.1.4 Numerical simulation example 111
6.1.5 Virtual input algorithm 113
6.1.6 Conclusion 116
6.2 Influence of driver’s dynamic characteristics on vehicle handling safety 116
6.2.1 Driver-vehicle-road stochastic closed-loop system model.117
6.2.2 General random perturbation method for response analysis of stochastic closed-loop system 120
6.2.3 The influence of driver’s dynamic characteristics on vehicle active safety 121
6.2.4 Numerical simulation example 122
6.2.5 Conclusion 128
6.3 Motion stability analysis of four-wheel steering vehicle 129
6.3.1 Motion stability theory 129
6.3.2 Establishment of driver-four-wheel-steering-vehicle closed-loop system model 130
6.3.3 Motion stability analysis of four-wheel steering vehicle 131
6.3.4 Conclusion 132
6.4 Application of matrix perturbation method in the stability analysis of four-wheel steering vehicle 133
6.4.1 Matrix perturbation method for eigenvalue problems of asymmetric matrices 133
6.4.2 Influence of vehicle parameters on motion stability.135
6.4.3 Conclusion 138
References 138
7 State and parameters estimation in the vehicle system dynamics 140
7.1 Vehicle sideslip angle estimation 140
7.1.1 Driver-vehicle closed-loop system model 140
7.1.2 Estimation of the sideslip angle based on the radial-basis-function-neural-network 145
7.1.3 Estimation of the sideslip angle based on adaptive Kalman filter 148
7.1.4 Comparison of two estimation methods of sideslip angle 149
7.2 Vehicle state estimation based on UKF algorithm 153
7.2.1 Nonlinear vehicle system with noise 153
7.2.2 UKF algorithm for vehicle state estimation 154
7.2.3 Test verification of vehicle UKF estimation methods 158
7.2.4 Comparison of UKF and EKF in vehicle state estimation 166
7.3 Vehicle state estimation based on DEAKF 168
7.3.1 Seven-degree-of-freedom nonlinear vehicle dynamics model 168
7.3.2 Dual extended adaptive Kalman filtering algorithm 170
7.3.3 Three methods of vehicle state estimation and their virtual test verification 173
7.3.4 Real vehicle test verification 180
7.4 Vehicle state estimation based on fuzzy logic 181
7.4.1 Fuzzy Kalman filter and S-AKF algorithm for state estimation 181
7.4.2 Virtual test verification.183
7.5 Parallel estimation of vehicle state and parameters based on EKF and RLS 188
7.5.1 Nonlinear vehicle dynamic model 189
7.5.2 EKF and RLS parallel algorithm 190
7.5.3 Virtual test verification and analysis 193
7.5.4 Real vehicle test verification and analysis 194
References 197
8 Vehicle handling inverse dynamics 199
8.1 Optimal control theory and solution methods 199
8.1.1 Optimal control theory 199
8.1.2 Optimal control solution method 200
8.1.3 Sequential quadratic programming algorithm 207
8.2 Research on linear vehicle angle input recognition 209
8.2.1 Vehicle angular input steering motion model 209
8.2.2 Simulation results 211
8.3 Research on linear vehicle force input recognition 213
8.3.1 Vehicle force input steering motion model 213
8.3.2 Simulation results 215
8.4 ADAMS/Car model building and test verification 216
8.4.1 ADAMS/Car vehicle modeling 217
8.4.2 Closed-loop control analysis 217
8.4.3 ADAMS/Car verification 218
8.5 Conclusion 219
References 219
9 Road unevenness, evolution random response and ride comfort based on vehicle vertical dynamics 222
9.1 Development status and trends 223
9.2 Study on frequency domain inverse dynamics of road unevenness 224
9.2.1 Identification of four-degree-of-freedom vehicle road roughness in frequency domain 224
9.2.2 Frequency domain identification of seven-degree-of-freedom vehicle road unevenness 228
9.2.3 Virtual test verification 231
9.3 Study on time domain inverse dynamics of road unevenness 236
9.3.1 Identification of four-degree-of-freedom vehicle road unevenness in time domain 236
9.3.2 Identification of seven-degree-of-freedom vehicle road unevenness in time domain 238
9.3.3 Virtual test verification 240
9.4 Prediction of evolution random response of vehicle excited by road surface 244
9.4.1 Vehicle vertical dynamics model 244
9.4.2 Response of vehicle vertical vibration 246
9.4.3 Numerical simulation example 248
9.4.4 Conclusions 249
9.5 Optimal design of vehicle ride comfort based on bionic lizard co-evolution algorithm 250
9.5.1 The bionic lizard co-evolution algorithms 250
9.5.2 Key technologies of bionic lizard co-evolution algorithms 252
9.5.3 Simulation results and analysis 256
9.6 Hydro-pneumatic suspension control matched with mechanical elastic wheels 264
9.6.1 Vehicle ride simulation model.264
9.6.2 Optimization of design parameters of hydro-pneumatic suspension 267
9.6.3 Analysis of optimization results 268
References 270