kira高等數(shù)學手寫筆記 高等數(shù)學同濟八版下冊同步輔導與課后習題詳解 含視頻課程大一高等數(shù)學專升本 數(shù)學考研
本書根據(jù)中國數(shù)學會制訂的“中國大學生數(shù)學競賽大綱”、江蘇省普通高等學校非理科專業(yè)高等數(shù)學競賽委員會制訂的“高等數(shù)學競賽大綱”和教育部制訂的“考研數(shù)學考試大綱”編寫,內容分為極限與連續(xù)、一元函數(shù)微分學、一元函數(shù)積分學、多元函數(shù)微分學、重積分、曲線積分和曲面積分、空間解析幾何、級數(shù)、微分方程等9個專題,每個專題又含“基本概
本書分五部分,內容包括:透過圖形看世界、眼見之實未必真、點線構圖基本功、圖形剪拼奧妙多、勾股定理古與今。具體內容包括:夜空找北;確定方位;穿林計程;澗溝測深;籬笆總長;曲徑通幽;劃船計時;印度蓮花問題;花壇周界問題等。
全書共分五章,內容包括:行列式、短陣、向量及線性方程組、矩的特征值和特征向量、二次型。各章的每節(jié)內容均配有典型例題,每章后都設置了涵蓋全章知識點的習題并在書后附有答案與提示,便于讀者學習參考。
本書依據(jù)中國大學生數(shù)學競賽大綱,以《高等數(shù)學》同濟大學第七版教材為藍本,設置了函數(shù)極限、微分學、一元函數(shù)積分學、微分方程、空間解析幾何、重積分、線面積分、無窮級數(shù)八個模塊。全書對高等數(shù)學的“三基”(基本概念、基本定理、基本方法)進行提煉、濃縮、梳理,選取了典型例題進行分析,強調解題思路,總結解題方法,不僅注重學生“三基
本書共分25章,分別介紹了對稱與周期框架的組合剛性、伴隨對稱均衡框架、帶多面體范數(shù)的剛性、無窮小體與計算機輔助設計剛性理論、優(yōu)化問題、圖的特殊族、全局剛性的條件、體條線鉸鏈框架的剛性、組合局部剛性與全局剛性的歸納構造、對稱無窮小剛性的變換等內容。
本書包含10章內容,第1章和第2章分別闡述和修訂了關于三角余弦和正弦函數(shù)以及相關雙曲函數(shù)的已知標準結果;第3章和第4章將這些結果用于分析“方形”和“拋物線”周期函數(shù)和雙曲函數(shù)之中;第5章討論了泛函方程周期解的一個特殊類別;第6章介紹了廣義三角函數(shù)的一些工作;第7章和第8章定義了基于泛函方程的廣義三角函數(shù)和雙曲函數(shù)的一個
本書共分7章,作者列出了在科學和工程學中的NLPDEs組;介紹了相容性;介紹了微分替換的觀點,列舉了霍普夫-科爾變換和伯格斯方程的經典例子;介紹了三個特殊的變換:速端曲線變換、勒讓德變換和安培變換;闡述了第一積分的相關情況等等。
本書共4章,介紹了群論基礎、環(huán)論基礎、域論基礎、伽羅瓦理論的相關知識。
本書為《代數(shù)學教程》第三卷,主要討論我們熟悉的那些數(shù)系:自然數(shù)集、整數(shù)環(huán)、有理數(shù)域、實數(shù)域、復數(shù)域,以及超復數(shù)等。本書作者從數(shù)學結構的角度出發(fā),以新穎的論述方式講述了每一種數(shù)系的構造(運算)及其性質,建立起了嚴格、系統(tǒng)的科學數(shù)系的邏輯過程。